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ABSTRACT

The analysis of non-linear systems has frequently been a major

problem to the engineer. The solution of system equations often

requires either a computer or relatively complex numerical tech-

niques. A straight-forward, relatively simple method is proposed

herein which permits the engineer to satisfactorily approximate the

exact solution to certain non-linear differential equations.
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I. INTRODUCTION

Systems described by non-linear differential equations often

must be analyzed on a computer, using some numerical algorithm if

the computer is of the digital type. The system variables are

evaluated at specific points, and perhaps graphs drawn of these

points. To discover the actual time solution to the system equations

it is usually necessary to fit these points to some other numerical

algorithm which will provide a curve fitting polynomial form of the

exact solution. Such methods not only are not completely accurate

but also are restrictive in that they require computer access; also,

depending upon the complexity of the particular system, computer

solution may require excessive time. These restrictions can sometimes

be avoided if there is available a mathematical method to analyze the

non-linear system.

Often, engineers are not as interested in exact solutions as

they are in answering the questions:

1. What are the initial and steady-state values of the system

variables?

2. What are the transient characteristics of the system? If the

engineer can answer these questions he has, in effect, analyzed the

system. The general nature of these questions suggests that the exact

solution is not necessary if an approximate solution can be found which

has essentially the same transient and steady-state responses.



II. DEVELOPMENT OF THE APPROXIMATION METHOD

Since the objective of an approximation method is to make the

solution to non-linear equations readily obtainable, a starting

point in finding such a method is to try to manipulate the equations

into a linear, or at least less non-linear form. A method which has

characteristics that can accomplish this purpose is the Laplace

Transform equivalent to time equations.

A. DERIVATION OF THE SERIES FORM OF THE LAPLACE TRANSFORM

Baycura [ref. 1] proposed that the transform of certain non-linear

terms could be found by using the series form of the Laplace Transform.

Recall that X(s) = I x(t)e~
st

dt (II-l)

Expanding the right-hand side by integrating by parts,

fxe"
st

dt = x f e"
st

dt - x f f e~
st
dtdt + x ( -[-./ e"

st
dt

J° Jo

and evaluating x, its derivatives, and the integrals at the extreme

points, it can be shown that the expansion becomes

£M = xiOi +
x{0! + xlOl + xlOi + ... (I ,.2)
s s s

Using this series form of the Laplace Transform, Brady [ref. 2] found

the transform of x
n
(t).

^{xn
(t)} = s

n
-\(sf (II-3)

Using similar methods a calculable final value term can be used as one

of the extremes in the evaluation of the Laplace Integral to obtain a

linearized series approximation to the Laplace Transform of non-linear

terms.



B. OBTAINING THE FINAL VALUE

The method used to derive the series form of the Laplace Transform

was to expand the Laplace Integral by integrating by parts and then

evaluate each term at the extreme points, a necessary condition being

-st
that xe •* as t — ». The upper limit represents the steady-state,

and for certain non-linear differential equations the steady-state, or

final value, can be found.

For example, consider the non-linear differential equation

x + x + x
2

= 1, x(0) = (II-4)

In the steady-state, x = 0, and

2
+ x

f
+ x

f
= 1, where x

f
is the final value of x.

Solving this quadratic equation produces the roots:

x
f

= .615, -1.655

C. APPROXIMATING THE LAPLACE TRANSFORM OF THE NON-LINEAR TERM

After integrating by parts, the expanded form of the Laplace Trans-

form of x is

£{x
2

} = x fxe~
st

dt - x /Txe~
st
dtdt + x (7|xe" stdtdtdt-- • • (II-5)

f _ct
Each term contains the term xe dt which is, by definition, the

Laplace Transform, X(s). To obtain the series approximation each term

in equation (1 1-5) is evaluated at its extreme points. In this manner

the first term becomes

x fxe~
st

dt = (x
f

- x )-X(s)

Jo

Since integrating in the time domain corresponds to multiplying by —

in the s domain, the second term becomes



-x I f xe'
st

dtdt = - (x
f

- x
Q

) X(s)dt = l
f

It follows that similar evaluation of all the terms in the expansion

will result in an infinite series of the form:

9
(xf

- xn )X(s) (xf
- x n )X(s)

^{x
2

} = (x
f

- x )X(s) -
f

s

°
+ —f-

\
...

s

r (*f
- x n ) (xf - xn ) —

i

= X(s) [_(x
f

- x
Q

) -
f

s

°
+

f

2
- -J (II-6)

D. THE METHOD OF APPROXIMATION USING SUCCESSIVE TERMS IN THE INFINITE
SERIES

The terms in the infinite series form given in equation (I 1-6) can

be evaluated by taking derivatives of the original differential equation.

Including more and more terms in the series will result in successive

approximations to the transform of the non-linear term. Evaluation of

these series terms is illustrated using equation (II-l). With the

given conditions, x
Q

= and x
f

= 0,

x + x + x = 1 x
f

= .615, x
Q

= 1

x + x + 2xx = x
Q

= -1 , x- =

• »• . •

•

"x'+ x + 2xx + 2x
2

= *Xq = -1,'Xf = 0, etc;.

E. USE OF THE FINAL VALUE IN THE APPROXIMATE TRANSFORM

2
Using the series form of the transform of x , a final value term

can be inserted to yield a linear equation in X(s) that is an approxi-

2
mation to the transform of x .

For example, consider a first approximation using only the first

term of the series.

^{x
2

} = X(s)(x
f

- x
Q

) = x
f
X(s)



Transforming equation (I 1-4) term by term,

^{x
2

} = sX(s) - x
Q

+ X(s) + .615X(s) =
j

X(s)(s + 1.615) = 1

X(s) " s(s + 1.615)

This equation can be expanded in partial fractions and the inverse of

the s-domain solution found.

Yf c \ - 1 _ A B
x (sj - rn i i cir\ - - +

s(s + 1.615) "
s s + 1 .615

A =
s + ].1615 ls=0

=
- 618 » B 4ls a -1.615

S - 618

The time solution corresponding to equation ( I 1-7) is

x(t) = .618 - .618 e'
1,615t

This approximate solution has an initial value of zero and rises

exponentially to a final value of .618. These values compare quite

favorably with the given initial condition, x
n

= 0, and calculated

final value, x
f

= .615. A comparison between the approximate solution

and the computer solution found on the SDS 9300 digital computer is

shown in Table II-l and Figure II-l. The comparison shows a close

agreement between the two transient responses.

A second approximation to the transform would include the second

term in the series form.

^{x
2

} = X(s) (x- - xn )

(x
f

- x
Q

)-

k

f "0 J
s

Substituting the values calculated for the terms in the series the

1

second approximation to the transform of x becomes ^{x } = X(s)(.615-—)



The effect of including derivative terms in the approximation is

discussed in later sections.
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TIME
(SEC)

COMPUTER
SOLUTION

.00000

APPROXIMATE
SOLUTION

.00000

ERROR

0.0 .00000

0.1 .09486 .09216 .00270

0.2 .17911 .17058 .00853

0.3 .25269 .23231 .02038

0.4 .31600 .29408 .02192

0.5 .36979 .34329 .02650

0.6 .41501 .38349 .03152

0.7 .45268 .41847 .03421

0.8 .48382 .44822 .03560

0.9 .50940 .47354 .03586

1.0 .53032 .49509 .03521

2.0 .60837 .59358 .01479

3.0 .61701 .61314 .00387

4.0 .61793 .61718 .00075

5.0 .61802 .61781 .00021

10.0 .61800 .61800

TABLE II-l

.00000
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x(t)

0.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

time(sec.

)

FIGURE II-l
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III. APPLICATION OF THE FINAL VALUE METHOD OF APPROXIMATION

The use of the final value method of approximating the solution

to non-linear system equations can now be demonstrated on two equations

containing first order non-linear terms.

A. APPLICATION TO A NON-HOMOGENEOUS NON-LINEAR EQUATION

Consider the case of vertical fall with air resistance. The

governing equation of the system is

Mv = Mg - kv
2

, v(0) = (III-T)

where M is the mass of the falling object, g is the acceleration due

to gravity, and k is a constant relating to the retarding force, which

varies as the square of the velocity. Evaluating the system equation

in the steady-state where v = 0, the final value of the velocity is

determined.

+ kv
2
. = Mg

v
2

= Mg/k

v
f

= JMgTk

2
The series approximation to the Laplace Transform of v as given by

equation ( I 1-6) is

.2, . lf/ . [V
, n

( "f " "o
) (V

f " V }

^{v 2
} = V(s) [(v

f
- v

Q
) 7

Having obtained the final value and knowing the series form of the

2
approximate transform of v , successive approximations can be made to

the solution of the system equation, adding successive terms with each

approximation.

13



1 . First Approximation .

Using the first term in the series form only,

^{v 2
} = v

f
V(s) = ^MgTk V(s)

Transforming the system equation term by term,

^{Mv = Mg - kv
2

} = sV(s) + (k/M)v
f
V(s) - g/s =

V ( s )

=
s(s + kv

f
/M)

Expanding in partial fractions,

ns) " s(s + kv
f
/M) "

s (s + kv
f
/M)

V(s) =
Mg/kv

f
Mg/kv

f

(s + kv
f
/M)

Taking the inverse transform, and substituting the equation v
f

= \Mg/k,

the time solution is found.

v(t) - v
f
(l-e-(

kVH)« t" 1 " 2 )

The exact solution can be obtained by separation of variables:

dv/dt = g - kv
2
/M

dv

g - kv /M

= dt

kM
dv

Mg/k - v'

= t

t = kM(l/2 Mg/k)ln
$ffi

+ *

2
v
f

+ v

-2

v = v
(1 -e-'p/MH)

f
(1 +e"

2 p7M 1
t)

(III-3)

14



As in the exact solution the velocity given in the approximate solution

starts at zero and increases exponentially to v
f

in the steady-state.

The basic difference between the two solutions is the speed with which

the velocity reaches the steady-state value. A comparison between the

two solutions is shown in Table III-l and Figure III-l, with v
f

= 36.4

and \qk/M = .27.

2. Second Approximation .

In this Second Approximation the first two terms in the series

form are used and the approximate Laplace Transform becomes:

^{v 2
} = V(s)

\jf
-

f

s

°

J (III-4)

The added terms are evaluated remembering that the necessary condition

for the final value method of approximation is that v
f

= 0. V
Q

can be

calculated from the system equation.

v
Q

= gM/M - Ok

v = g

Substituting this value into equation (II 1-4)

,

£{v
2

} V(s) [v
f

+ g/s]

After transforming the system equation term by term, a partial fraction

expansion is used to find the s domain characteristic equation.

sV(s) + V(s)(k/M)(v
f

+ g/s) = g/s

V(s) =
(V + ^gk/M

1

s + gk/M)

Expanding in partial fractions and taking the inverse transform, the time

solution is found . With L = k/M,

15



\i( s )
- _=== g ___ ===-

(s + R74 - j |3Li74)(s + ¥074 + j N3L574)

A*

(s + (Li74 - j t3L574) (s + CgTf + j P^)

A—JLp- -^-e-J
'

90
, A* = -a *J

'

90

j 5Li
"

J3L5 T3Lg

v(t) = W3"WL e " ^^ ts1n pLcj73 t (III-5)

It is apparent that v(t) has a steady-state value of zero. Also, this

approximation has the transient characteristic of a damped sinusoidal,

while the exact solution was essentially exponential with no oscil-

lations.

3. Discussion of Results .

The first approximation led to a characteristic equation that

was linear in s and was very easy to inversely transform to find the

time solution. The second approximation contained a characteristic

equation that was quadratic in s and a little more difficult to trans-

form, but still relatively simple. The quadratic term was a direct

result of the 1/s factor in the second term of the series form of the

2
Laplace Transform of v . It follows that as succeeding terms are added

to the approximation the characteristic equation will become of increasingly

higher degree in s and more difficult to transform into the time domain.

The requirement to solve difficult equations is contrary to the basic

objective of finding a simple mathematical approximation. While the first

approximation was exact in the steady-state and had the same general

transient characteristics, the second approximation was very inaccurate,

both in the steady-state and transient forms. If even more terms are

16



added in an attempt to find the best possible approximation, the

resulting s domain equations become very difficult to solve and

transform.

17



TIME
EXACT

SOLUTION
APPROXIMATE
SOLUTION ERROR

.00 .00000 .00000 .00000

.01 .09828 .09815 .00013

.02 .19656 .19603 .00053

.03 .29483 .29365 .00118

.04 .39310 .39100 .00210

.05 .49137 .48810 .00327

.06 .58963 .58493 .00370

.07 .68788 .68150 .00638

.08 .78612 .77781 .00831

.09 .88435 .87386 .01049

.10 .98256 .96965 .01291

.20 1.96369 1.91347 .05022

.30 2.83215 2.74804 .08411

.40 3.91599 3.72636 .22963

.50 4.88436 4.59674 .28762

1.00 9.59594 9.35320 .24274

2.00 15.75303 13.56130 2.19173

3.00 24.37309 20.63852 3.73457

4.00 28.87245 24.36801 4.50444

5.00 31.81554 27.21503 4.60051

10.00 36.05460 33.88677 2.16783

11.1 36.40000 34.62811 1.77189

13.7 36.40000 36.40000 0.00000

TABLE III-l

18



40

35

30

25

v(t)

0.0 1 2 3 4 5 6 7 8 9 10 11 12

time(sec.

)

FIGURE III-l
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B. APPLICATION TO A HOMOGENEOUS NON-LINEAR EQUATION

The differential equation governing the discharge of a capacitor

through a non-linear diode is given by Cunningham [ref. 3].

c
at

+ ae + be =
°» e (°)

= V

He
|| = -Ae - Be, (III-6)

where A = a/C and B = b/C. With the necessary condition that e
f

= 0,

it can be seen from equation (III -6) that e
f

= 0. Recalling that the

2
series form of the Laplace Transform of e is given by

X(e2
, - E(s)[(e

f
- e

Q
) - ^-Jl + fk^sL .

.

.T)
,

the terms in the series can be calculated.

e + Ae + Be
2

= e
Q

= -Av - Bv
2

e + Ae + 2Bee = e = A
2
V + 3ABV

2
+ 2B

2
V
3

, e
f

=

» • » .•

h Ae" - 2Bee + 2Be
2

= *e! = -A
3
V-7A

2
BV

2
- 10AB

2
V
3

'0

,3W4 on 3 u4
s
f

- 4B°r - 2B°V
H

, e. =

1 . First Approximation

^{e 2
} = (e

f
- e )E(s) = -VE(s)

Transforming equation (III-6) term by term,

£{e + Ae + Be
2

= 0} = sE(s) - V + AE(s) - BVE(s) = (III-7)

E(s) =
s + A - BV

Taking the inverse transform the approximate time solution is obtained

e( t ) = Ve"
At

e
BVt

(III-8)

Cunningham [ref. 3] gives the true solution as

-At
e(t) = ^ xr- (HI-9)

1 - BV/A(e" -1)

20



Both solutions have initial values of V and final values of zero.

The transient response is an exponential decay to in both cases.

A comparison between the two solutions is shown in Table III-2. It

can be seen from the solutions that the approximation will be best

for BV much less than A.

2. Second Approximation .

Including the first two terms of the series form in the

approximation, the transform becomes

^{e 2
} = jje

f
- e ) - -!tI^JE(s)

After transforming equation (III-6),

>2<

e + Ae + Be
2

= 0} = sE(s) - V + AE(s) + B(-V-
(AV*BV

) )=

2„2«

E(s)(s + A-BV- ( ABV
!
BV

))=V

E(s) =

s

Vs

s
2

+ (A - BV)s - (ABV + B
2
V
2

)

Expanding in partial fractions, the s domain solution is found.

E(s) =

+ (A-BV)
+ ^A

Z
-2BV + 4ABV + 5bV

2 2

(A-BV) ^ - 2BV + 4ABV + 5E^T
s

2 2

It is apparent that the denominator of the second term in the right-hand

side of the partial fraction expansion will, when transformed, cause the

time solution to be unstable as the steady-state is approached. With the

constants A = 1, V = 1, and B = .5, the time solution was found to be

e(t) = .6052 exp(-1.15t) + .3946 exp(.75t)

The second term is unstable.

21



3. Discussion of Results .

It can be shown that a third approximation to the solution

using the first three terms in the series form of the transform of

2
e , with A = 1 , B = .5, and V = 1 , with result in the following s

domain characteristic equation:

_2

E(s) =

s
3

+ .5s
2

- .75s - 1.5

The corresponding time solution is

e(t) = .22e
,9965t

+ Ke"-
45t

cos(1.2t + e)

As in the second approximation, this solution contains an unstable

term. These results can be predicted by examining the characteristic

equation in both cases. The presence of negative terms in these

equations leads to unstable terms in the time solutions, since negative

terms are contrary to known stability criteria. Furthermore, as more

and more terms of the series approximation to the transform of the non-

linear term are added, the n order characteristic polynomial equation

J. L.

will contain at least one negative term if the (n-1) order equation

contains at least one.

C. DISCUSSION OF THE METHOD OF SUCCESSIVE APPROXIMATION

In both examples of the use of successive approximations, including

only the first term in the approximation resulted in a satisfactory

comparison to the exact solution while adding more terms not only made

the solution more difficult, but also introduced unstable terms in one

case, and an inaccurate solution in the other. In the following sections

the final value method will be applied to more examples, but only the

first approximation will be used.

22



TIME

EXACT APPROXIMATE
SOLUTION SOLUTION ERROR

.00 1.00000 1.00000 .00000

.01 .98515 .99501 .00986

.02 .97059 .99005 .01946

.03 .95631 .98511 .02880

.04 .94232 .98020 .03782

.05 .92859 .97531 .04672

.06 .91512 .97045 .06467

.07 .90191 .96561 .06370

.08 .88894 .96079 .07185

.09 .87622 .95600 .08918

.10 .86374 .95123 .08749

.20 .75069 .90484 .25415

.30 .65583 .86071 .20488

.40 .57546 .81873 .24327

.50 .50682 .77880 .27198

1.00 .27953 .60653 .32700

2.00 .09449 .36788 .27339

3.00 .03375 ,22313 .18938

4.00 .01229 .13534 .12305

5.00 ,00450 .08208 .07758

10.00 .00003 .00708

TABLE 1 1 1-2

.00705

A = 1.0, B = 0.5, V = 1.0

23



IV. A DETAILED ANALYSIS OF THE APPLICATION OF THE FINAL
VALUE METHOD USING FIRST APPROXIMATIONS ONLY.

In the following sections the results obtained from the application

of the approximation method to the equation

x + x + Ax
3

= 1, x(0) = (IV-1)

will be shown. The effect of varying A, the coefficient of the non-

linear term, will be studied by comparing the approximate solutions to

solutions obtained on the SDS 9300 Digital Computer using Subroutine

RKAM. In addition, the solutions obtained when a second derivative

term was added to the same equation and A again varied will be analyzed

in the same manner.

A. APPLICATION TO A SECOND ORDER NON-LINEAR EQUATION

To illustrate the application of the approximation method to equation

(IV-1) consider this equation with A = 1

:

x + x + x
3

= 1, x(0) = (IV-2)

Transforming the equation term by term,

^{x + x + x
3

= 1} = sX(s) - x(0) + X(s) + {x
3

} = 1/s

3
1 • Finding The Approximate Laplace Transform of x .

The approximate transform of the second order non-linear term,

3
x , was found as follows:

by definition, ^f{X
3

} = x
3
e"

st
dt

Expanding by integrating by parts,

x
3
e"

st
dt = x

2

j
xe"

st
dt - (x

2
)

j
,' xe'

st
dtdt + (x

2)M (xe~
st

dtdtdt-. .

.

24



-st
Since xe dt = X(s), and integrating in time corresponds to

2
multiplying by 1/s in the s domain, evaluating x and its derivatives

at the extremes results in the series,

^(x 3
) - (x* - #X(.) - '4 - x

2

Q
)*M + (7

f
- x^^i - •••

Rearranging terms,

(IV-5)<£{x
3

} = X(s)

(x
2

- x
2

) fx
2

- x'

2
)

iJ- v 2 ^ -21 ° + f °\x
f

- x
Q

j -
s

~2

2
For a first approximation all derivatives of x are neglected and the

3
linearized approximation to the Laplace Transform of x becomes

<^{x
3

} = (x
2

- x
2
)X(s) (IV-6)

Recalling the required condition that x- = 0, the final value, x*, can

be found.

+ x + x
3

= 1

x
3

+ x - 1 = (IV-7)

The cubic equation has three roots, one real and two complex. Selecting

the real one,

x
f

= .682

Us ing this value of x
f

, equation (IV-6) becomes

£{x3
} = .4651X(s).

2. Alternate Methods of Finding The Approximate Transform .

To further illustrate the obtaining of the approximate transform

of the non-linear term, two different approaches will be used. Equation

(IV-3) can also be expanded as

|
x
3
e'

st
dt = x

j
x
2
e'

st
dt - x

J

I x
2
e"

st
dtdt + x I

'

j
x
2
e'

st
dtdtdt

J *> Jo J J J j J
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2
Using the Laplace Transform of x found by Brady [ref. 2],

x
2
e"

st
dt = sX

2
(s),

and evaluating the terms in the expansion as before,

... ••

oDx 3
} = (x

f
- x )sX

2
(s) -

Xf

s

"
X
°

sX
2
(s) +

Xf "/°
sX

2
(s)-.--

s

Neglecting derivatives and rearranging,

5f{x
3

} = sX
2
(s)x

f
(IV-8)

Now, expanding X(s) in its infinite series form,

v/ n
^ Xf " X

(P ^
X
f " X

(P + ( xf " X
(P

X(s) = -
s

-2 —3 ...

If derivatives are again neglected,

and equation (IV-8) becomes

?
sxfxfX(s) 9

<£{x
3

} = -±J- = x
2
X(s)

The approximate transform thus obtained is identical to equation (IV-6).

3
The final approach will be to take the transform of x directly,

using results found by Brady [ref. 2]:

X(x 3
} = s

2
X
3
(s) = s

2
X(s)X

2
(s) (IV-9)

p
Writing X (s) as the product of two infinite series,

r
(x

f
-X

Q
) (X

f
-X

Q
) (X

f
-X

Q
) n r (X£Xq) (x

f
-x

Q
) "I

(s) [—
i

— + 3—-
-.J [— -

2
+ ...

- s s — — Si —

• * # • *

o p(xf -xn j (X^-Xn J vX^-x^j
I

vx^-xn j vx^-xn j

s s

Neglecting derivatives and products containing derivatives,

s
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Substituting this result into equation (IV-9), the approximation becomes,

~ s
2
X(s)x£

?

s

Again, the approximate transform obtained is identical to equation

(IV-6).

3. Using The Approximate Transform To Find The Solution .

Completing the term by term transform of equation (IV-1)

^{x + x + x
3

= 1} = sx(s) - x(0) + X(s) + x^X(s) = 1/s

With x(0) = 0, this equation becomes

X(s)(s + 1 + .4651) = 1/s

X(s) =
s(s + 1.4651)

Taking the inverse transform, the approximate solution is found.

v/o -
,

- A - B
MSj " s(s + 1.4651) ~

s
"

(s + 1.4651)

A = T

—

Ac cV , B =
1.4651

D " 1.4651

Y / v .6825 .6825
Ms; '"

s " s + 1.4651

x(t) = .6825 - .6825e"
1,4651t

A comparison between the approximate solution and the computer solution

is shown in Table IV-3.

4. Variation of the Coefficient of the Non-linear Term.

Extending the methods developed to the solution of the general

equation,

x + x + Ax
3

= 1, x(0) m 0,

the final values are found by solving the cubic equation,
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y
3 + x L - n

With A = .5, this equation becomes

x
3

+ 2x - 2 = 0.

The solution to the cubic equation of the form,

x
3

+ ax + b =

can be found [ref. 4]:

Letting A

then the roots are

TW1 TTF? •

x A + B, - <
A
t
B

>
+ <y) ft . (AtB)-(A-B) p-

Choosing the real root, x = A + B.

With A = .5, the auxiliary equations are

A-WHP. »=fR
and x

f
= .7713, x£ = .5949.

2
Similarly, for other values of A, the values of x

f
and x

f
were found

to be as follows:

.5 .7713 .5949

.9 .6972 .4861

1.0 .6825 .4651

1.1 .6709 .4500
1.5 .6257 .3914
2.0 .5904 .3481

5.0 .4847 .2349

The general characteristic equation was found by transforming the general

equation term by term, with the initial condition, x(0) = 0.
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^{x + x + Ax
3

= 1} = sX(s) + X(s) + Ax^X(s) = 1/s

X(s) =

B =

x(x + 1 + Axi)

1

i + Ax:

c =

*! +

-1

1 + Axi

(s + 1 + Ax£)

The generalized time solution (approximate) is then

x(t) = 1

1 + Ax£ 1 + Ax^

1
e
-(l + Ax£)t

With the same values of A, the time solutions were found to be as

follows:

A

.5

.9

1.0

1.1

1.5
2.0
5.0

x(t)

.7708 - .7708 exp

.6905 - .6956 exp

.6825 - .6825 exp

.6689 - .6689 exp

.6300 - .6300 exp

.5896 - .5896 exp

.4600 - .4600 exp

(-1.2975t)
(-1.4375t)
(-1.465U)
(-1.4950t)
(-1.587U)
f-1.6962t)
(-2.1745t)

Tables IV-1 through IV-7 show comparisons between the approximate

solutions and the solutions found on the digital computer for the

several values of A. For all values of A the approximations were

quite satisfactory. In each case the approximate solution rose slightly

slower to the steady-state. For the worst case, A = .5, the approximate

steady-state value differed from the computer solution bt 2.6%. The

maximum difference in the transient values was approximately 10%, but

typical differences were much less.
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00000 .00000

0.1 .09515 .09379 .00136

0.2 .18112 .17618 .00494

0.3 .25851 .24853 .00998

0.4 .32784 .31209 .01575

0.5 .38958 .36790 .02168

0.6 .44418 .41693 .02725

0.7 .49215 .45999 .03216

0.8 .53401 .49781 .03620

0.9 .57030 .53103 .03927

1.0 .60158 .56021 .04137

2.0 .74303 .71362 .02941

3.0 .76665 .75508 .01157

4.0 .77027 .76651 .00376

5.0 .77082 .76936 .00118

6.0 .77090 .77048 .00042

7.0 .77091 .77071 .00021

8.0 .77092 .77078 .00014

9.0 .77092 .77079 .00013

10.0 .77092 .77079

TABLE IV-1

A = 0.5

.00012
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00000 .00000

0.1 .09514 .09314 .00200

0.2 .18100 .17381 .00719

0.3 .25798 .24367 .01431

0.4 .32640 .30418 .02122

0.5 .38656 .35659 .02997

0.6 .43884 .40198 .03686

0.7 .48376 .44130 .04246

0.8 .52193 .47535 .04658

0.9 .55402 .50484 .04918

1.0 .58075 .53038 .05037

2.0 .68374 .65636 .02738

3.0 .69499 .68628 .00871

4.0 .69612 .69339 .00273

5.0 .69623 .69507 .00116

6.0 .69624 .69538 .00076

7.0 .69624 .69557 .00067

8.0 .69624 .69559 .00065

10.0 .69624 .69560

TABLE IV-2
A = 0.9

.00064
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00000 .00000

0.1 .09514 .09301 .00213

0.2 .18097 .17335 .00762

0.3 .25785 .24274 .01511

0.4 .32605 .30267 .02338

0.5 .38583 .35443 .03140

0.6 .43756 .39914 .03842

0.7 .48176 .43776 .04400

0.8 .47111 .47111 .04796

0.9 .55022 .49992 .05030

1.0 .57596 .52481 .05115

2.0 .67181 .64606 .02575

3.0 .68138 .67408 .00730

4.0 .68224 .68005 .00169

5.0 .68233 .68205 .00028

6.0 .68233 .68240 .00007

7.0 .68233 .68248 .00015

8.0 .68233

TABLE
A = 1

.68249

IV-3
.0

.00016

32



TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00000 .00000

0.1 .09513 .09288 .02259

0.2 .18094 .17287 .00807

0.3 .25772 .24175 .01597

0.4 .32569 .30106 .02453

0.5 .38508 .35214 .03294

0.6 .43626 .39613 .04013

0.7 .47976 .43401 .04575

0.8 .51626 .46662 .04964

0.9 .54650 .49471 .05179

1.0 .57131 .51890 .05241

2.0 .66073 .63526 .02547

3.0 .66891 .66136 .00755

4.0 .66960 .66721 .00239

5.0 .66966 .66852 .00114

6.0 .66966 .66881 .00085

7.0 .66966 .66888 .00078

8.0 .66966 .66890

TABLE IV-4
A = 1.1

.00076
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00000 .00000

0.1 .09513 .09246 .00267

0.2 .18082 .17134 .00948

0.3 .25720 .23865 .01855

0.4 .32438 .29609 .02819

0.5 .38218 .34509 .03709

0.6 .43126 .38690 .04436

0.7 .47211 .42258 .04953

0.8 .50556 .45302 .05254

0.9 .53256 .47899 .05356

1.0 .55406 .50115 .05291

2.0 .62321 .60365 .01956

3.0 .62787 .62461 .00326

4.0 .62816 .62890 .00070

5.0 .62818 .62877 .00159

6.0 .62818 .62995 .00177

7.0 .62818 .62999 .00181

8.0 .62818 .63000

TABLE IV-5

A = 1.5

.00182
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TIME
(SEC)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.0

3.0

4.0

5.0

6.0

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION

.00000 .00000

.09511 .09199

.18067 .16962

.25655 .23514

.32255 .29044

.37867 .33712

.42529 .37651

.46315 .40875

.49329 .43781

.51687 .46149

.53506 .48148

.58710 .56977

.58963 .58596

.58975 .58893

.58975 .58948

.58975 .58958

TABLE IV-6
A = 2.0

ERROR

.00000

.03129

.01105

.02141

.02311

.04155

.04878

.05340

.05548

.05538

.04356

.01733

.00367

.00082

.00027

.00027
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00000 .00000

0.1 .09505 .08990 .00515

0.2 .17977 .16223 .01754

0.3 .25276 .22042 .03234

0.4 .31280 .26724 .04556

0.5 .35978 .30491 .05487

0.6 .39484 .33522 .05962

0.7 .41999 .35961 .06038

0.8 .43748 .37923 .05825

0.9 .44938 .39501 .05437

1.0 .45734 .40771 .04963

1.5 .47075 .44237 .02838

2.0 .47231 .45406 .01325

2.5 .47249 .45800 .01449

3.0 .47251 .45932 .01319

3.5 .47251 .45977 .01274

4.0 .47251 .45992 .01159

4.5 .47251 .45997 .01254

5.0 .47251 .45999 .01252

5.5 .47251 .46000 .01251

10.0 .47251 .46000

TABLE IV-7

A = 5.0

.01251
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B. THE EFFECT OF ADDING A SECOND DERIVATIVE TERM TO THE NON-LINEAR
EQUATION

A second derivative term was added to equation (IV-1) and the

approximate transform was used to find an approximate solution to the

resulting equation. The equation,

x + x + x + Ax
3

= 1, x(0) = 0, (IV-11)

3
still contained a second-order non-linear term, x .

1 • Use of the Final Value Method to Find the Approximate Solution .

As in Part A the solution method will be illustrated on the

example equation with A = 1:

x + x + x + x
3

= 1, x(0) = (IV-12)

The final value is the same as the one found for equation (IV-1), since

x
f

will also be zero in the steady-state. The approximate transform

of the second-order non-linear term is also the same since its derivation

was independent of the system equation.

Transforming equation (IV-12) term by term, which x(0) = 0,

^{x + x + x + x
3

= l} = s
2
X(s) + sX(s) + X(s) + x

2
X(s) = 1/s

The s domain characteristic equation is then

X(s) =—-« 3

s(s^ + s + 1.4651)

Expanding in partial fractions the s domain solution can be found.

1 A
+

B B*

s(s
2

+ s + 1.4651)
" s s +

-
5 " J' 1 ' 102 S+.5 + J1.T02

A = .6825

-i24° 23'
B = -.3600e J^

Y , , .6825
,
— 36e-J 24

°
23

'

,
-.36eJ 24

°
23

'

S + .5 - jl .102 s + .5 + jl .102
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The corresponding time solution was found to be

x(t) = .6825 - .7200e"
,5t

cos (1.102t - .42547) (IV-13)

Equation (IV-13) is basically that of a second order system, which was

expected since the example equation is basically second order, with a

non-linear term. A satisfactory approximation should start at zero and

follow a damped sinusoidal path to some steady-state value. The approxi-

mation here does have a damped sinusoidal characteristic and proceeds to

a steady-state value that is the same as the value predicted. To meet

the requirement that the solution begin at zero it is necessary that

the second term in the approximate solution be equal to zero, or that

.72 cos (-.42547) = .6825

It will be shown that this is \/ery nearly the case.

2. Solution To The General Equation .

The characteristic equation for the general case, equation

(IV-11), was found to be

X(s) =

s(s
2

+ s + 1 + Ax?)v

f J

For the same values of A as in Part A the time solutions were found to

be as follows:

.5 .7708 - .8468e 'jjjcos (1 .024t - .45378)

.9 .6956 - .7642e ~~rcos (1.09U - .42980)
1.0 .6825 - .7200e "pjcos (1.102t - .42547)
1.1 .6689 - .7526e "jjjcos (1.116t - .41384)

1.5 .6300 - .6780e ~'r+cos (1.155t - .40833)

2.0 .5896 - .6400e
" bt

cos (1.201t - .42927)
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For all values of A the approximate solution oscillated slightly

slower than the computer solution, but both solutions had the same

number of oscillations. The difference between peak overshoots was

in all cases much less than 10%, as was the difference between final

values. As can be seen in Tables IV-8 through IV-13, the initial

values of the approximate solutions were indeed yery close to zero,

the worst case being when A = 1.0 and A = 1.1, when the value of

the approximate solution at t = was -.00217.
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00097 .00097

0.5 .10440 .11243 .00803

1.0 .33989 .33845 .00144

1.5 .60451 .58305 .02146

2.0 .81756 .77810 .03946

2.5 .92862 .89458 .03404

2.8 .94273* .92666 .02607

3.1 .92556 .93484* .00928

3.5 .87331 .91794 .04463

4.0 .79738 .87134 .07396

4.5 .74154 .81807 .07653

5.0 .71795 .77401 .05706

5.2 .71687# .76086 .04399

6.0 .74152 .73543# .00509

6.5 .76366 .73807 .02559

7.0 .77966 .74757 .03209

7.6 .78646* .76130 .02516

8.0 .78467 .76901 .01566

8.5 .77878 .77546 .00332

9.2 .77029 .77844* .00815

9.9 .76646 .77660

TABLE IV-8
A = 0.5

.01014

* maximum
# minimum
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00090 .00090

0.5 .10440 .10442 .00002

1.0 .33956 .32977 .00979

1.5 .59980 .56705 .03275

2.0 .79372 .74632 .04740

2.5 .86480* .84110 .02370

2.9 .83921 .86018* .02097

3.5 .73951 .82436 .08485

4.0 .66772 .76820 .09048

4.6 .63470# .70505 .07035

5.0 .64183 .67630 .03447

5.8 .68537 .65663# .02874

6.5 .71275 .66807 .04468

6.9 .71623* .67896 .03727

7.5 .70913 .69378 .00535

8.0 .69914 .70162 .00221

8.6 .69123 .70484* .01361

9.0 .68950# .70408 .01458

9.9 .69327

TABLE
A = C

.69876

IV-9
.9

.00549

* maximum
§ minimum

41



TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 -.00217 .00217

0.5 .10439 .10442 .00003

1.0 .33947 .32977 .00970

1.5 .59862 .56705 .03157

2.0 .78797 .74632 .04165

2.5 .85002* .84110 .00912

2.9 .81757 .86018* .04261

3.5 .71375 .82436 .11061

4.0 .64515 .76820 .12305

4.5 .61960# .71417 .09457

5.0 .63091 .67630 .04539

5.8 .67750 .65663# .02087

6.7 .70314# .67342 .02972

7.5 .69274 .69378 .00104

8.0 .68267 .70162 .01895

8.6 .67578 .70484* .02906

9.0 .67525 .70408 .02883

9.9 .68057 .69876

TABLE IV-10

A = 1.0

.01819

* maximum
# minimum
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TIME
(SEC)

0.0

0.5

1.0

1.5

2.0

2.5

2.5

2.8

3.5

4.0

4.5

5.0

5.6

6.0

6.6

7.0

7.5

8.0

8.6

8.7

9.5

9.9

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION

.00000 -.00271

.10440 .08885

.33939 .32040

.59747 .56024

.78231 .73669

.83615* .82438

.83615 .82438

.81156 .83754*

.69032 .79173

.62529 .73153

.60557# .67115

.62180 .64182

.65910 .62765#

.67941 .63143

.69127* .64712

.68784 .65890

.67746 .67071

.66750 .67735

.66214 .67882*

.66202# .67853

.66608 .67360

.66911 .67078#

TABLE IV-11

A = 1.1

ERROR

.00271

.01555

.01899

.03723

.04562

.01177

.01177

.02598

.10141

.11324

.07158

.02002

.03146

.04798

.04415

.02894

.00674

.00015

.01668

.01831

.00725

.00167

* maximum
# minimum
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00019 .00019

0.5 .10440 .10951 .00511

1.0 .33906 .32818 .01088

1.5 .59286 .55181 .04105

2.0 .76043 .71103 .04940

2.3 .79151* .76455 .02696

2.7 .76030 .78966* .02936

3.5 .61477 .73391 .11904

4.2 .56072# .65212 .00860

5.0 .59678 .59613 .00065

5.5 .63090 .58906# .04184

6.2 .65221* .60276 .04945

7.0 .63870 .62639 .01231

7.5 .62622 .63621 .00999

8.2 .61907# .64051* .02144

9.0 .62442 .63637 .01195

9.5 .62902 .63245 .00343

9.9 .63112

TABLE
A = 1

.62985#

IV-12
.5

.00127

* maximum
# minimum
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TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00011 .00011

0.5 .10439 .09845 .00594

1.0 .33865 .31138 .02727

1.5 .58720 .52996 .05724

2.2 .74929* .71719 .03210

2.6 .71288 .74679* .03391

3.0 .63342 .71233 .07891

3.5 .54876 .67929 .13053

4.0 .51945# .61830 .09885

4.5 .53894 .57207 .03313

5.0 .57814 .54967 .07047

5.3 .59863 .54708# .05155

5.9 .59863* .55481 .05769

6.5 .60512 .57821 .02691

7.8 .579211 .60105 .02184

7.9 .57947 .60111* .02611

8.5 .58527 .59816 .01289

9.0 .59100 .59371 .00271

9.7 .59385* .58848#

TABLE IV-13
A = 2.0

.00537

* maximum
# minimum
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V. CONCLUSION

The specific object of the methods developed was to find a

mathematically simple procedure with which to approximate the

solution to certain non-linear differential equations. The only

requirement was that the steady-state (final) value of the system

variable could be obtained. This requirement implies a non-

oscillatory steady-state, where all derivatives are zero. The

best results were obtained in the case where there was an applied

forcing function (non-homogeneous equation). The nature of the

solution does not limit this function to a unit step, although

either a constant input or one which decays to zero in the steady-

state are the only inputs which will permit a final value of the

system variable to be found. For the discharging capacitor example,

with no input applied, the transient response was not yery accurate,

although the general path followed and the final value obtained were

essentially the same as for the exact solution.

The usefulness of the final value method of approximation lies

in its ready use by the engineer. The mathematics required is minimal

and the solutions obtainable are sufficiently close to the exact solution

to allow its use in analyzing non-linear systems which have a constant

steady-state.

46



TIME
(SEC)

COMPUTER
SOLUTION

APPROXIMATE
SOLUTION ERROR

0.0 .00000 .00011 .00011

0.5 .10439 .09845 .00594

1.0 .33865 .31138 .02727

1.5 .58720 .52996 .05724

2.2 .74929* .71719 .03210

2.6 .71288 .74679* .03391

3.0 .63342 .71233 .07891

3.5 .54876 .67929 .13053

4.0 .519451 .61830 .09885

4.5 .53894 .57207 .03313

5.0 .57814 .54967 .07047

5.3 .59863 .54708# .05155

5.9 .59863* .55481 .05769

6.5 .60512 .57821 .02691

7.8 .57921# .60105 .02184

7.9 .57947 .60111* .02611

8.5 .58527 .59816 .01289

9.0 .59100 .59371 .00271

9.7 .59385* .58848#

TABLE IV-13
A = 2.0

.00537

* maximum
# minimum
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V. CONCLUSION

The specific object of the methods developed was to find a

mathematically simple procedure with which to approximate the

solution to certain non-linear differential equations. The only

requirement was that the steady-state (final) value of the system

variable could be obtained. This requirement implies a non-

oscillatory steady-state, where all derivatives are zero. The

best results were obtained in the case where there was an applied

forcing function (non-homogeneous equation). The nature of the

solution does not limit this function to a unit step, although

either a constant input or one which decays to zero in the steady-

state are the only inputs which will permit a final value of the

system variable to be found. For the discharging capacitor example,

with no input applied, the transient response was not yery accurate,

although the general path followed and the final value obtained were

essentially the same as for the exact solution.

The usefulness of the final value method of approximation lies

in its ready use by the engineer. The mathematics required is minimal

and the solutions obtainable are sufficiently close to the exact solution

to allow its use in analyzing non-linear systems which have a constant

steady-state.
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